Math 107
Fall 2017
Lecture 8

Angles $\dot{\varepsilon}$. Triangle

find x, then find each angle

$$
\begin{aligned}
& \text { we know } \\
& A \xrightarrow{\text { 䗑 } 5 x-20>} C \\
& \begin{array}{l}
10 x-20=180 \\
10 x=180+20 \\
10 x=200
\end{array} \quad \begin{array}{r}
\left.x=\frac{200}{10} \quad \begin{array}{l}
A x+5 x-20=180^{\circ} \\
x=20 \\
B \rightarrow 80^{\circ} \\
C \rightarrow 80^{\circ}
\end{array}\right]
\end{array}
\end{aligned}
$$

In triangle $A B C$,
Angle B is 30° more than angle A.
Angle C is 3 times angle A.
Draw i label such triangle
find the measure of all three angles

In triangle $A B C$, the measure of three angles are three consecutive even integers.
find the largest angle. we know

$$
\begin{gathered}
A+B+C=180^{\circ} \\
x+x+2+x+4=180 \\
3 x+6=180 \\
3 x=180-6 \\
3 x=174
\end{gathered}
$$

$$
x \text { must be }
$$

even.

$$
\begin{gathered}
-\Delta x=\frac{174}{3} \\
x=58
\end{gathered}
$$

$$
\begin{aligned}
& B \text { we know } \\
& A<x^{\frac{B}{x+30}-3 x>} C \\
& \text { we know } \\
& A+B+C=180^{\circ} \\
& \begin{array}{c}
x+x+30+3 x=180 \\
5 x+30=180 \\
5 x=180-30
\end{array} \quad \begin{array}{cc}
5 x=150 \\
x=\frac{150}{5} \\
x=30
\end{array} \quad \begin{array}{l}
A \rightarrow 30^{\circ} \\
B \rightarrow 60^{\circ} \\
C \rightarrow 90^{\circ}
\end{array}
\end{aligned}
$$

Vertical Angles

opposite angles are called vertical angles.

$$
A=C \quad, B=D
$$

find x, then the measure of each angle
 we have vertical angles, they are equal

$$
3 \times \underset{\rightarrow}{-70}=x+50
$$

$$
\begin{aligned}
& =180-10^{\circ} \quad 1=110 \\
& =110^{\circ} \quad 110^{\circ} \text { each }
\end{aligned}
$$

$$
\begin{aligned}
3 x-x & =50+70 \\
2 x & =120 \quad x=60
\end{aligned}
$$

find x, then find the measure of

Vertical Angles
They must be equal

$$
\begin{gathered}
3 x+\underset{3 x+2 x}{ }=20+100 \\
5 x=120
\end{gathered}
$$

$$
\neq \text { Angle with - measure } \quad x=\frac{120}{5} \quad x=24
$$ at this level.

Complementary angles \Rightarrow Their sum is 90°

Type	Angle	Complement
Complementary	x	$90-x$

$$
\begin{aligned}
& A+B=90^{\circ} \\
& \overrightarrow{x+}+B=90 \\
& B=90-x
\end{aligned}
$$

find two Complementary angles such that one of them is 4 times the other one.

$$
\begin{aligned}
& x=90-x \\
& x=4 \cdot(90-x) \\
& x=4 \cdot 90-4 \cdot x \\
& x=360-4 x \\
& x+4 x=360 \\
& 5 x=360
\end{aligned} \quad \begin{gathered}
72^{\circ} \dot{\varepsilon} 90-72 \\
72^{\circ} \dot{1} 18^{\circ}
\end{gathered}
$$

find two Complementary angles such that the Sum of 3 times one of them and 4 times the other one is equal $t_{0} 135^{\circ}$

$$
\begin{gathered}
4 x \text { 立 } 90-x \\
3 x+4(90-x)=135 \\
3 x+360-4(90-x)=135 \\
-x+135 \quad \begin{array}{l}
3 \cdot x=135-360 \\
-x=-225 \\
x=\frac{-225}{-1} \\
x=225
\end{array}
\end{gathered}
$$

Supplementary angles:. Their sum is 180°

find two supplementary angles $x \dot{1} 180-x$ Such that the sum of one of them and twice the other one is $260^{\circ} . \quad x+2(180-x)=260$

$$
\begin{aligned}
& \begin{array}{c}
x=1006 \\
100^{\circ} \text { ェ } 80^{\circ}
\end{array} \\
& x+360-2 x=260 \\
& -x+360=260 \\
& -x=260-360 \\
& -x=-100 \quad x=\frac{-100}{-1}
\end{aligned}
$$

